

TR-220 Multi-Function Test Set Datasheet

Description

Álava Ingenieros

The TR-220 Multi Function Test Set completely covers all your ramp testing needs in one small and easy to use package. Test capability for Traffic and Collision Avoidance Systems (TCAS), Distance Measuring Equipment (DME) and Transponders Modes A, C, Elementary, Enhanced Surveillance and now ADS-B Transmit and Receive capability including DO-260A/B requirements. The TR-220 features state of the art desian. Microprocessor control and simple switch layout resulting in an easy-to-use single operation requiring person minimal training.

P/N 90 000 088

Features

- Transponder Mode A, C, S, Elementary, Enhanced (automatically determined)
- Performs all transponder Tests IAW FAR 43 Appendix F and Euro Control Mode S test criteria
- DF-17 Extended Squitter ADS-B compliant with DO-260 A/B and AMC 2-24
- Full control of TCAS I and II intruder tests and validation. Storable intruder/scenario simulations
- Provides complete DME validation and customizable simulations
- TIS-B (Traffic Information Broadcast) DF17/18 Air and Surface simulation with 4 intruder aircraft
- Hand- Held directional antenna included and Optional Antenna Coupler Cap available (TAP-200)
- Compliant with European CE requirements
- 2 year limited warranty; Extended warranties available

Transponder

- Test Set automatically determines capability of transponder being tested (ATCRBS or Mode S)
- Testing can be done over-the-air and in Direct Connect for better control and tolerance
- Test Set configured for automatic sequencing based on stored criteria or manual control of individual transponder tests
- Full display of test results decoded and measurements performed
- RS-232 connection for download of results to a PC

DME

- Allows testing on all channels (108.00 to 117.95 MHz)
- Measures DME power, frequency, and PRF. Hand-Held Antenna and Direct Connect methods available
- Transmits DME Morse-Code I.D.
- User selection and complete control of DME simulated scenarios

TCAS

- The TR-220 performs testing of TCAS I, TCAS II and Traffic Advisory Systems
- Allows simulation of ATCRBS or Mode S intruder aircraft
- permanent storage of 10 intruder scenarios, to simplify TCAS testing and local procedures
- User selection of velocity, starting distance, starting altitude, and vertical speed.
- Measures Relative UUT power and frequency
- Start, Stop and Hold selections allow technicians to perform bearing/relative heading tests with ease

Transponder Test Specifications *

The TR-220 performs the following tests based on the capabilities of the transponder:

- Mode A 4096 code, IDENT, percent reply, pulse spacing, pulse width
- Mode C Altitude (feet and grey code), percent reply, pulse spacing,
- pulse width
- Side-lobe suppression (SLS)
- Mode A/S and C/S All Call Mode S address, percent reply
- Mode A Only and Mode C Only
- Mode S Surveillance I.D. (DF5) Mode S address, percent reply, flight status (Air, Ground, Alert, SPI), Mode S/Mode A 4096 code compare (automatic mode)
- Mode S Surveillance Altitude (DF4) Mode S altitude, percent reply, Mode S/Mode C altitude compare (automatic mode)
- Mode S Surveillance Short (DF0) Mode S address, vertical status (Air, ground), percent reply, decoded country code, decoded tail number (if applicable)
- Mode S Comm. I.D. (UF5/DF21) Mode S ID code, percent reply
- Mode S Comm. Altitude (UF4DF20) Mode S altitude, percent reply
- Undesired replies (UF11) – Checks for reply to incorrect Mode S interrogation
- Acquisition squitter Pass/Fail indication of squitter duration, decoded Mode S address, interrogator code
- Extended squitter Pass/Fail indication of squitter duration, decoded Mode S address
- Max Airspeed Decodes and displays maximum airspeed
- Diversity Displays Pass/Fail indication and measured value of RF leakage through Mode S transponder antenna ports
- Sensitivity (MTL) Measures and displays MTL for Modes A, C, and S Measures and displays transponder power (dBm or watts), frequency,
- and receiver sensitivity (dBm) Decodes and displays Flight I.D.

DO-260A/B General Tests Performed but not limited too:

- Decodes and displays Mode S address in Octal and Hex
- Mode S Enhanced Surveillance parameters, including Selected Altitude (BDS4); Roll Angle, True Track Angle, Ground Speed, Track Angle Rate, and True Airspeed (BDS5); Magnetic Heading, Indicated Airspeed, Mach #, Barometric Altitude Rate, and Inertial Vertical Velocity (BDS6)
- Receives and decodes 1090 MHz ADS-B data, including squitter type (airborne position, surface position, aircraft identification/category, and airborne velocity), latitude/longitude, N/S velocity, E/W velocity, Flight I.D., Mode S address, altitude (GNSS or barometric), and airspeed
- Transmits 1090 MHz ADS-B data for four intruder aircraft (airborne or surface position)
- Transmits TIS data for four intruder aircraft

- DO-260A/DO240(2) specific parameters tested but not limited too:
- BDS 0,5
- BDS 0.8
- BDC 0,9 Subnet 1, 2, 3, 4
- Velocity Hex
- DF 17 MS Address
- Interrogator Identifier
- . Latitude, Longitude
- Airborne Squitter Status Bits No Info, SPI, Alerts, Mode A 4096 Code
- Squitter Period, Squitter Type (Ext Squitter Airborne Position Report)
- **TYPE 28 Report**
- . BDS 6,1
- **TYPE 29 Report**
- BDS 6,2 Target State and Status
- Type 31 Report (BDS 6,3)
- Horizontal Position Integrity Information

DO-260B specific parameters tested but not limited too:

- Status Type 28, Type 1 Emergency Report & Type 2, Active RA
- Type 29 6,2 Squitter TCAS/ACAS Operational Status, TCAS/ACAS RA, FMC/MPC/FCU Altitude, Pressure and Heading
- Type 29 6,2 ME Field, Squitter type, Target State and Status
- Type 31 6,3 Aircraft Operational Status
- Horizontal Position Status (Nap) Navigation Integrity Category (NIC) for DO-260B
- Latitude/Longitude Compare for position, velocity and system accuracy
- ADS-B IN Decode and display aircraft ADS-B RX capability in Type 31 Subtype 0
- GPS Antenna Offset.

Receiver	Frequency	Range	1086.5 to 1093.5 MHz
	1	Accuracy	<u>+</u> 200 kHz
	Power	Range	47 to 64 dBm
		Accuracy	+ 2 dB (direct connect)
			+ 3 dB (radiated)
	Sensitivity	Range	-50 to -87 dBm
		Accuracy	+ 2 dB (direct connect)
			+ 3 dB (radiated)
	Reply Percent	Range	0 to 100%
		Accuracy	<u>+</u> 1%

	Transmitter	Frequency	1030 MHz <u>+</u> 10 kHz				
		Power	≥ 4 dBm				
I		Modes	A, C, S, EHS, ADS-B TX/RX and TIS				

TCAS Test Specifications *

The TR-220 allows testing of TCAS I, TCAS II, and Traffic Advisory Systems by simulating either ATCRBS or Mode S intruders. The Setup menu allows operator to configure and store 10 TCAS scenarios, including Distance (1 to 50 NMI), Altitude (-1000 to +99,900 ft.), Vertical Speed (-7,500 to +7,500 fpm) and Velocity (100 to 1200 KTS.). The TR-220 provides a relative measurement of TCAS power and frequency.

Toct S	norifi	ation	*
			•

The TR-220 provides test capability for DME by allowing operator to select test parameters, including Channel (108.00 to 117.95 MHz) and Velocity (120 to 1200 KTS.).

The TR-220 measures and displays DME PRF (scan rate), power, and frequency. Also, the TR-220 transmits a Morse Code I.D.

Transmitter	Frequency	1090 MHz <u>+</u> 100 KHz
	Power	<u>≥</u> 4 dBm
	Modes	C, S

Receiver	Frequency	1026.5 to 1033.5 MHz		
	Power	47 to 64 dBm		

-				
Transmitter	Frequency	962 to 1213 MHz <u>+</u> 100 KHz		
	Power	≥ 4 dBm		
Receiver	Freq. Range	Channel Freq. <u>+</u> 3.5 MHz		
	Freq. Accuracy	<u>+</u> 200 KHz		
	Sensitivity	<u><</u> -35 dBm		
	Range			

EHS

 $II \cdot 14$

1

100%

PASS

180 nmi/h

Cont: AUTO

Antenna

- Directional antenna can be hand-held, Tripod Mounted or mounted on side of case
- Antenna gains marked on attached decal
- Range 10 to 170 feet

Accessories

- Directional antenna (hand-held or mounted on side of case)
- AC Power Cord
- Direct Connect Cable
- Directional Antenna Cable
- Operators Manual (CD-Rom)
- TAP-200 Anti-Radiation Coupler (Optional)
- All Accessories Store in Transit case

Physical

- Packaging MIL-PRF-28800, Style C
- Size 14.5x9.4x6.5 in. (36.8x23.9x16.5 cm.)
- Weight: 20 lbs. (9.1 kg.)
- Operating Temperature: -28 to +55 C
- Battery Operation; 8 hours at 20% Duty Cycle Front Panel Replaceable
- AC Operation/Charging: 100-240 VAC, 50-400 Hz

Capab Comm AB

AIR Press A/M

M S Long Air

MS Ampl Var.

Velocity:

Chg:Up/Dn

MS Pulse Width PASS

M A 1234 IDENT 100%

0.45 - 20.35 - 0.45

BDS5 True Trk Angle

An E120 D Rt + 8 D/s

20000' A07008

One Branca Road East Rutherford, NJ 07073 Tel. +1(201) 933-1600 Fax +1(201) 933-7340 sales@telinst.com www.telinstrument.com

Auto Transponder Detection Capability

Decodes and Displays Binary, Hexadecimal and Octal parameters

Displays PASS or FAIL based on Stored Criteria

Measures and Displays Pulse Width, spacing & timing intervals

Numerous user variable parameters for TCAS and DME testing

Easy to understand and interpret Enhanced Surveillance results

Comprehensive and full DO-260 A/B Testing

DF17/DF18 TIS Traffic Information System validation

Tel-Instrument Electronics Corporation

el•Instrume

TB-2100 ATC/DME/MODE S Test Set **Datasheet**

Description

The TB-2100 is a modern, easy to use bench test set designed for testing Mode A, C, and S transponders and distance measuring equipment (DME).

The TB-2100 allows testing of Mode S transponders with new capabilities including, Extended Squitter, ADS-B, TIS, Elementary (ES) and Enhanced Surveillance (EHS), and including evolving European requirements.

The TB-2100 with IEEE-488 option uses the same IEEE-488 commands as older generation ATC/DME and Mode S test sets used in current generation ATE.

P/N - 90 000 106

Features

- Two independent, non-coherent, RF channels for Mode S testing
- Tests the latest Mode S Capabilities
 - Automatic Dependent Surveillance Broadcast (ADS-B)
 - o Extended Squitter
 - Elementary (ES) and Enhanced Surveillance (EHS)
 - Traffic Information Systems (TIS)
- Easy to Use
 - o Modern front-panel provides simple, intuitive, interface
 - Multiple, variable rate slew knobs control pulse width, power, repetition rates, and position
 - Keypad supports direct test parameter entry
 - Large color, touch-pad display, which continuously presents critical measurement information and permits immediate test parameter selection
 - Quick recall of standard test conditions using CAL button
- Additional Benefits
 - o Provides video and RF signal feeds plus scope triggers
 - Can be connected to spectrum analyzers and other bench equipment
 - Flash memory provides easy update/upgrade path
 - Standard 2 year limited warranty; extended warranty available

Product Specifications

The TB-2100 features test capability for DME and transponders ATCRBS and Mode S).

Specifications

Signal Generator

Frequency Range Frequency Accuracy Signal Level Range Signal Level Accuracy952.00 to 1223.00 MHz(SPR relative to P2) $\pm 0.001\%$ $\pm 0.001\%$ (SPR relative to P2) $\pm 1.0 \text{ dB}$ $<1.0 \text{ dB}$ (Relative to SPR)Signal Level Range Signal Level Accuracy0 to -100 dBm into 50 Ω, 1 dB resolutionP5 Position P6 Position $0.40 \pm 0.05 \mu s$ before SPR, variable -1 $-51 \text{ to } -79 \text{ dBm} \pm 1.75 \text{ dB}$ $-51 \text{ to } -79 \text{ dBm} \pm 1.0 \text{ dB}$ (Relative to SPR) $-50 \text{ to } -79 \text{ dBm} \pm 1.0 \text{ dB}$ Interference Pulse Position (Relative to P1) $-1.40 \text{ to } +45 \pm .05 \mu s$, variable in 50 n (Relative to P1) $-90 \text{ to } -100 \text{ dBm} \pm 1.2 \text{ dB}$ Interference Pulse Width 0 .30 to 3.00 \mu s + 1% variable in 50 ns	us .00 to .40 to is steps steps 3 steps
-51 to -79 dBm ± 1.0 dB -80 to -89 dBm ± 1.1 dB -90 to -100 dBm ± 1.2 dB	is steps ⊨steps B steps
	B steps
On/Off Ratio > 60 dB Interference Pulse/P5 Level -15 to +3 dB ± 0.25 dB, variable in 1 dl Suppressor Pulse Amplitude Variable from 9 to 28 V (relative to P1) Suppressor Pulse Width 35 ± 5 µs	
DME Mode	
UUT Measurements Mode VOR Pair, TACAN Channel, MHz	
Frequency 1020 to 1155 MHz; <u>+</u> 20 kHz for ATC; <u>+</u> 50 kHz Pulse Characteristics	
Power 0 to 4000 W pk; ± 0.7 dB 1 to 99 W; ± 0.5 dB P1 Rise time 2.0 +/- 0.5 us 100 to 4000 W P1 Fall time 2.5 +/- 0.5 us 100 to 4000 W P1 Width 3.5 +/- 0.2 us	
Transponder Modes P2 Rise time 2.0 +/- 0.5 us Mode ATCRBS and Mode S P2 Fall time 2.5 +/- 0.5 us P2 Width 3.5 +/- 0.2 us 92 Width 3.5 +/- 0.2 us	
Pulse Characteristics P2 Position X Mode - 12.0 ± 0.2 µs, variable -6.00 (Relative to P1) in 0.1 µs steps	to +6.00
Rise time (P1) 75 ± 25 ns Y Mode - 30.0 ± 0.2 μs, variable Fall time (P1) 150 ± 50 ns -6.00 to +6.00 in 0.1 μs steps	
ATCRBS Mode A/C Scope Sync Width 0.8 to 1.2 µs PRE 1 to 5000 Hz	
Pulse Width (P1/P2/P3) 0.80 ± .05 µs, variable -0.3 to 1.4 µs in 50 ns 15/135 Hz Modulation Percent Modulation 30 to 50 %	
P2 Position (Relative to P1) $2.00 \pm .05 \mu$ s, variable $\pm 1.00 \mu$ s in 50 ns steps15 Hz Modulation $15 + /-1 \text{ Hz}$ Mode C P3 Position (Relative $21.00 \pm .05 \mu$ s, variable $\pm 1.00 \mu$ s in 50 ns 135 Hz Modulation $135 + /-2 \text{ Hz}$ to P1)steps 100μ s in 50 ns 100μ s in 50 ns 100μ s in 50 ns	rements
Interference Pulse Width 0.30 to $3.00 \ \mu s \pm 1\%$, variable in 50 ns steps Range 0 to 100 \lambda b \lambda \lambda b \lambda b \lambda b \lambda b	i% of
Interference Pulse Selectable for coherent or non-coherent Increments Echo Level -12 to +3 dB + 0.25 dB, variable in 1 d'	B steps
Interference Pulse/SLS Level -15 to +3 dB ± 0.25 dB, variable in 1 dB steps (relative to P1) UUT Video (Top and Main)	
Scope Sync Width 0.8 to 1.2 µs Scope Sync Position 0 to 175 µs in 1 µs steps Scope Sync Position Scope Sync Position <td></td>	
(Relative to P1) Rear Panel BNC Connectors RS-232 (Calibration and Software Upd IEEE-488 Connector A/C Interlace Mode 1.00 ± 0.20 ms IEEE-488 Connector Interrogation Spacing DPSK Modulation Input	ate)
Double Mode Interrogation External SLS Interrogation Spacing 3 to 500 µs Video Input for Mode S Interrogation Low Power Input	
Mode S External Trigger Calibration Marks	
Pulse Width (P1/P2/P3) 0.80 ± .05 µs, variable -0.3 to 1.4 µs in 50 ns steps General	
P2 Position (Relative to P1) $2.00 \pm .05 \mu$ s, variable $\pm 1.00 \mu$ s in 50 ns stepsPower100 to 120 VAC, 60 Hz; 220 to 24Mode A P3 Position (Relative to P1) $8.00 \pm .05 \mu$ s, variable $\pm 1.00 \mu$ s in 50 ns stepsPower100 to 120 VAC, 60 Hz; 220 to 24Dimensions14.5 in. W x 11.0 in. H	0 VAC, 50 Hz 1 x 14.25 in. D
Mode C P3 Position (Relative to P1) 21.00 ± .05 μs, variable ± 1.00 μs in 50 ns 368 mm W x 279 mm l 28 28	H x 362 mm D lbs. (12.7 kg.) 5 to 40°C

P4 Position (Relative to P3) $2.00 \pm 0.5 \,\mu$ s, variable $\pm 1.00 \,\mu$ s in 50 ns steps

Tel-Instrument Electronics Corp. 728 Garden Street Carlstadt, NJ 07072 (201) 933-1600 www.telinstrument.com

TR-36 NAV/COMM TEST SET Datasheet

Description

The **TR-36** NAV/COMM Test Set is a modern precision test instrument that provides comprehensive avionics ramp test capability for rapid functional testing of VOR, LOC/GS, ILS, MB, VHF-UHF COMM (AM/FM), ELT and EPIRB equipment. It is conveniently packaged in a rugged, yet lightweight weather-proof case with a highly visible color LCD display. The Test Set was designed to be simple and easy to use as your one source for COMM/NAV ramp testing.

The new TR-36 features several new advancements:

- Test capability for ELT and 406 MHz EPIRB
- High resolution LCD COLOR display with intuitive user interface
- Audio measurement capability for (S+N) N testing and Audio/Intercom system testing

<u>Features</u>

- VOR, LOC, GS, ILS and MB receiver testing
- ELT (121.5 / 243 MHz) EPIRB/PLB (406 MHz) testing
- SELCAL tone generation
- VHF, and UHF COMM AM/FM Transmit/Receive testing
- High Resolution graphical displays of aircraft simulated results

<u>VOR</u>

Provides RF signal generation across the entire VOR band. Complete simulation of VOR bearing in 0.1° increments.

- Accurate generation of 30 Hz variable, reference, and 9960 Hz sub-carrier
- Preset bearing simulation or slew in 0.1° increments
- 30 Hz REF & VAR, and 9960 Hz modulation can be deleted to check flag operation
- Covers the entire VOR band of 108.00 to 117.95 MHz.
- 1020 Hz IDENT tone Selectable ON/OFF
- FM Immunity Test
- "On the Fly" adjustments
- Precise control of RF output power in Direct Connect and Antenna operation

P/N - 90 000 136

Tel-Instrument Electronics Corp.

One Branca Road East Rutherford, NJ 07073 (201) 933-1600 Sales – Extension - 368

- ✤ Large easy to read 5.1" COLOR display
- Simple intuitive interface and menu structure
- High capacity long life Li-ion batteries
- Rugged 8 lb. MIL-PRF-28800F, Class 2 case
- Remote software updates via Ethernet interface

LOC and GS

CAT I, II, and III Simulation of GS and LOC signals. Variable DDM in .001 DDM values

- Precise RF simulation of LOC/GS ILS signals
- Allows selection of preset DDM deflections or manual slew in 0.001 increments
- 90 Hz and 150 Hz ON/OFF selection
- 1020 Hz IDENT tone Selectable ON/OFF
- FM Immunity Test
- Simultaneous LOC/GS/MB Mode for coupled autopilot testing
- Complete Auto Sweep selection
- "On the Fly" adjustments
- Precise control of RF output power in Direct Connect and Antenna operation

Marker Beacon and ILS

Simple user selection of 400 Hz, 1300 Hz, or 3000 Hz MB tones at 95% modulation of the 75 MHz carrier

- Output Power easily adjustable from +13 to -67 dBm
- ON the FLY changes
- Auto cycling of MB tones and carrier

SELCAL

- Continuous or Single Burst Tones
- Selectable Pulse Pairs
- Variable Modulation (Continuous)
- Monitor broadcast on headphone jack

Headset / Microphone Connections

- Headset jack for monitoring audio from UUT transmission
- Microphone (or external modulation input) for transmitting from TR-36 to aircraft receiver UUT

RF Signal Generator

RF ACCURACY

@ Antenna Connector

(same as Time Base)

Dual Mode LOC

Dual Mode GS

Tri- Mode LOC

Marker Beacon

Dual Mode LOC

Dual Mode GS

Tri- Mode LOC

Marker Beacon

Tri-Mode GS

Tri-Mode MB

@ RF Direct Connect

Spectral Purity

Tri-Mode GS

Tri-Mode MB

<u>ELT</u>

- Continuous monitoring of ELTs on 121.5 & 243 MHz
- Accurate Power and Frequency measurements
- Monitor broadcast on headphone jack

EPIRB (406 MHz Beacon)

- Continuous monitoring of all COSPAS/SARSAT signals
- Accurate Sensitivity and Frequency measurements
- Decoding and display of: Position(LAT/LONG), ID, Beacon Type, Type of Locating Device, Device Activation Code

COMM Receiver – Audio S+N/N System Testing

- Automatic audio S+N/N ratio detection during COMM receiver testing
- TR-36 monitors receiver UUT audio output while transmitting tone modulated signal
- Provides system testing through aircraft audio/intercom panel via Intercom connector

RF FREQUE	NCIES		FREQUENCY	RANGE			
FUNCTION	FUNCTION		TO	RESOLUTION			
VOR Channels	VOR	108.000 MHz	117.950 MHz	50 kHz Steps			
Variable VOR		108.000 MHz	117.950 MHz	1 kHz Steps			
LOC Channels*	LOC	108.1000 MHz	111.950 MHz	50 kHz Steps			
GS Channels*	GS	329.1500 MHz	335.000 MHz	50 kHz Steps			
COMM AM	COMM AM	10.00 MHz	511.900 MHz	100 kHz Steps			
AM Variable		10.00 MHz	511.900 MHz	1 kHz Steps			
COMM FM	COMM FM	10.00 MHz	511.900 MHz	100 kHz Steps			
FM Variable		10.00 MHz	511.900 MHz	100 kHz Steps			
SELCAL	SELCAL	10.00 MHz	511.900 MHz	100 kHz Steps			
Variable		10.00 MHz	511.900 MHz	1 kHz Steps			
Marker MB		75.0000 MHz	N/A	N/A			
1	* Locali	zer and Glideslone Frequ	encies are Automatically P	aired			

0 to -69.9 dBm

-20 dBm (FIXED)

-40 to -110 dBm

-60 dBm (FIXED)

Note - All Modes Variable 0.1 dB

Note – All Modes Variable 0.1 dB

Harmonics Non-Harmonics Spurious

FREQUENCY RANGE

10.00 to 75.00 MHz

75.00 to 335 MHz

335 to 511.999 MHz

10.00 to 75 MHz

75.00 to 335.00 MHz

335 to 511.999 MHz

Localizer

<-40 dBc

<-40 dBc

RF OUTPUT RANGE, ACCURACY

1.0 dB Steps

N/A

1.0 dB Steps

N/A

± 2 dB

± 2 dB

± 3 dB

± 2 dB

± 3 dB

± 2 dB

Modulation Characteristics											
VOD Made									a da	1	
VOR Mode	Deference		040/	LOC M	ode	. 0.010	1/	GS M	ode		. 0.010/
30 HZ I	Reference	±(0.01%		90 HZ	± 0.01%		90 HZ			$\pm 0.01\%$
30 H		±t	0.01%	1	020 11-	± 0.01%		150	ΠZ		± 0.01%
		±	2%		020 82	± 0.01%	/0				
	9960 HZ	±t	0.01%		Fixed				Fixed		
		20%	MM + 10/			20% ΔΜ -	10/		150 Hz	40	$0/\Lambda M \pm 10/$
20 & 9900		30%	$\frac{1}{1} \frac{1}{1} \frac{1}$	90 a	130 HZ	20% AN =	20%	90 0		40	$\frac{76}{10}$ AIVI ± 176
AM Mod Va	riable	30 /0 /	AIVI ± 2 /0	AM Mod V	lozo 112	20 % AIVI 3	2 /0	AM Mod	Variahla	40	/0 AIVI ± 2 /0
30 & 9960	Hz Tones	0 t(55%	90 &	150 Hz	10 to 30	1%	AWWOOd	90 Hz	1	30 to 60%
00 0 0000	1020 Hz	0 to	55%	U	020 Hz		//0		150 Hz		20 t0 50%
	Distortion	01	-1%	Di	stortion	-1%		D	listortion	4	<1%
	Distortion		\$170	Di	501001	\$170			1510111011	1	\$170
VOR FM MC	DD	30 Hz re	eference at ±	480 Hz Pea	k Deviatio	n on 9960 Hz	z Sub o	arrier			
	Accuracy	± 10 Hz	2								
	Distortion	<2% (F	or 30 Hz Re	eference)							
Variab	le Bearing	0.1º In	crements ±	0.15°							
VOR Beari	ing Sweep	TBD									
PI	RESETS		U1/R1	U2/R2	FS	0C		FS	D2/L2		D1/L1
LOC DDM	± 0.0015	5 DDM	0.093	0.155	0.200	0.000		-0.200	-0.155	j	-0.093
GS DDM	+ 0.003	DDM	0.091	0 175	0 400	0.000		-0.400	-0 175	5	-0.091
10		DDIN	TBD	TBD						0.001	
	C Sweep		TED								
6	is Sweep		TBD								
Marker Beac	non			Single C	arrier		1		TRI-Mode	<u>_</u>	
			$\pm 0.01\%$ (<1% distortion)			+0'	+ 0.25% (<1% distortion)				
		400112	± 0.01% (<1% distortion)			10.4	$\pm 0.4\%$ (<1% distortion)				
		1300 HZ	$\pm 0.01\%$ (<1% distortion) \pm				± 0.4	4% (<1% U	stortion)		
		3000 Hz	± 0.01% (<1% distortion) ± 0.9% (<1% distortion)								
Modulation											
	95% A	M Fixed	± 2% Accuracy ± 2% Accuracy								
COMM AM											
	Tone	1020 Hz	30% ± 1.5% Accuracy			0 to 100% in 1% steps ± 2%					
Т	one 10 Hz to	10 kHz	TBD				ТВД				
COMM FM											
••••	Tone 10 f	o 35 Hz	+ 0.2% Accuracy (<1% distortion)			011	Hz Steps				
	35 Hz to	100 Hz	+ 0.02%	Accuracy (<	1% distor	tion)	0.1 kHz Steps				
	100 U- to		+ 0.01%		1% dictor	tion)	0.11				
100 Hz to 10 kHz ± 0.0			± 0.01%	Accuracy (<		1011)	0.11	KHZ Steps			
1000 Hz I one 5 kHz Deviation ± 1%			± 1% ACC		(. 40/	di na na set a s	0.1	-U = 0:			
	0 to 25 Hz d	eviation	± 0.2 KHZ	+1% of settil	ng (<1% (distortion)	0.11	KHZ Steps			
Т	one 10 Hz to	10 kHz	TBD				TBD)			
SELCAL											
_			± 0.01% (<1% distortion	on)						
Tone	Frequency A	ccuracy	Single Tra	Insmission			Ena	bled			
			Continuou	is 7.5 sec			Ena	bled			
	Modulati	on Tone	Fixed				30%	AM ± 2%	•		
			Variable				0 to	99% in 1%	Steps, ±2	2%	

Glideslope

Marker Beacon

COMM TX

TR-36

MEASURMENT FUNTIONS							
FREQUENCY RANGE	10.00		Desetution	TOD	A	TDD	
@ Antenna Connector	10.00	to 515 MHZ	Resolution -	- IBD	Accu	racy – TBD	
	10.00	to 515 MHZ	Resolution -	- IBD	ACCU	racy – TBD	
SENSITIVITY		05 dDm					
@ Antenna Connector	2.						
@ KF Direct Connect	51	+ 5 UBIII					
	211	vp-p (5002)					
POWER RANGE							
@ RF Direct Connect	10.00	to 515 MHz	0.1 to <1 W TBD		1 to <100 W TBD	100 to 1999 W TBD	
	External A	ttenuator Require	d for all Measuren	nents > 3	0 W		
Accuracy	< 1(00 MHz : ± 12% o	fReading		±1 Count (CV	V Only)	
Accuracy	10 to	515 MHz : ± 12%	of Reading		±1 Count (CV	V Only)	
DUTY CYCLE							
		≤ 10 W					
		> 10 to ≤ 20 \					
		> 20 to ≤ 30 W					
MODULATION METER		1					
AM							
Modulation Range & Accuracy		400 Hz to 1 kHz					
	,,	10 to 100% ± 10% of reading				15	
	Sensitivity	@ Antenna Connector			≤ - 25 dBm		
		@ RF Di	F Direct Connect		≤ + 5 dBm		
FM		100.1					
		400 Hz & 1 kHz					
Deviation Range &	Accuracy	1 to	25 KHZ				
		± 0.4 kHz + 8% of reading				15	
Minimum II	nput Level	@ Antenna Connector			≤ - 25 dBm		
		@ RF Direct Connect			≤+5	dBm	
121.5/243 Beacon Monit	or	400 H	z to 1 kHz		D 01 11 11		
Modulation Range & Accuracy		10 to 100% :	± 10% of reading		By Similarity	AM Meter	
406 Beacon Monitor				1			
Deviation Range &	Accuracy	400 H	z & 1 kHz				
		1 to	25 kHz		By Similarity	FM Meter	
		± 0.4 kHz +	- 8% of reading				
			5				
VSWR							
	Range	10 to	350 MHz				
	Accuracy	SWR < 3	3:1 of reading				

Port: Antenna			TR-36 - Comm Receiver
Mod Type	AM	⊕	
Frequency	118.000	MHz	
Power	-20.0	\rm \rm dBm	
Tone Freq	500	⊕ Hz	PTT ON
Tone Level	30	🚸 %Мо	d
Modulation Source	Internal		•
< Back			Run >
	Test St	opped	

COMM RX

Port: Antenna		TR-36 - Selcal
Frequency	118.000 🚸	
Power	-20.0	
Modulation	30.0	
Selcal Tone		
		Send Once
< Back		Continuous
	Test Stopped	

SELCAL

		ELT/PLB pg 1 of 3
Frequency	406.025	D
Power	20.000	Hun
BCH Errors	0	
Country:	Norway	
Protocol:	Standard Location	
Hex ID:	2024F72524FFBFF	
Device:	EPIRB	
ID:	MMSI=506153	
< Back		Next >
R	unning test RUN_ELTPLB	TEST

406 EPIRB (1)

Power Specifications		
Battery	Lithium Ion	
	7.4 V; 8800 mAh	
Duration – fully charged	> 4.5 Hours Continuous	
AC Input voltage	100 to 240VAC 50/60 & 400 Hz	
DC Input voltage	12 VDC, 3.33 A (max)	
Fuse Requirements	1.0 A SB (2 req.)	
Operating Temperature	-40°C to +55°C	
Storage Temperature	-40°C to +70°C	

Standard Accessories and Options

- Standard 2 Year Limited Warranty included
- Multi-Band, Telescoping Omni Antenna
- Operational Manual
- External Battery Charger
- Direct Connect Cable
- Intercom Jack to Audio System Cable
 Options
- Optional Transit Case
- Optional External HF Antenna

INPUT/OUTPUT Connectors		
Direct Connect	Туре N	
Impedance	50 Ω	
Max Input	30 Watts Max.	
VSWR	TNC	
10.00 to ≤ 350 MHz	< 1.3:1 Ratio	
> 350 to 512 MHz	< 1.3.5:1 Ratio	
Antenna Connector	BNC	
Impedance	50 Ω	
Max Input	0.1 Watts	
MIC/EXT Mod	PJ-068 (.206 " 3 conductor)	
Headset	PJ-055 (.25" 2 conductor)	
Intercom	U-174/U (.281" 4 conductor)	

Physical Characteristics		
Case Style	MIL-PRF-28800F, Class 2	
Height	3 3/8" (8.6 cm)	
Width	12 13/16" (32.5 cm)	
Depth	7 3/8" (18.7 cm)	
Weight Static	8.1 lb (3.7 kg)	

Tel-Instrument Electronics Corp.

One Branca Road East Rutherford, NJ 07073 (201) 933-1600 www.telinstrument.com