

🛆 Álava Ingenieros

Edificio Antalia. Albasanz 16. 28037 Madrid +34 91 567 97 00 | alavaingenieros.com | alava@alava-ing.es Madrid | Barcelona | Zaragoza | Lisboa | Lima | Quito | Texas

Engineering Flow-Measurement Solutions

Features

DATA SHEET

- Standard probe geometries for 3, 5, and 7-hole probes with customizable variations for each
- Tip diameters as small as 1.59 mm
- Average Angular Accuracy of <1°
- Average Velocity Accuracy of 1% or ±1 m/s
- Temperature Ratings to 500°C
- Probe Calibrations from 5 m/s to Mach 2.0

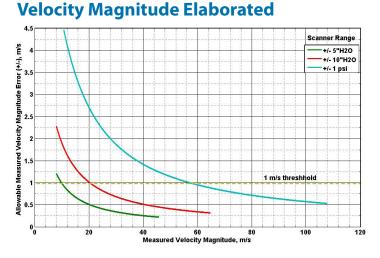
Applications

- General aerodynamics
- Turbomachinery
- Wind tunnels
- UAVs and manned aircraft
- Wind turbines
- Water flows
- Automotive wakes, engine compartments

PRODUCT SPECIFICATIONS

Measurement Accuracy

	-
Flow angles ^{1, 2}	± 1°
Velocity Magnitude ^{1, 2}	<1% or 1m/s, (whichever is larger)
Thermodynamic Data ³	Reference Pressure, Total Temperature
Flow Cone Angle of Receptivity	20° (3HP), 60° (5HP), 70° (7HP) NOTE: This is not directly related to the conical angle of the tip
Calibration Flow Speeds	5 m/s to Mach 2.0
Frequency Response	Standard ⁴ : <50 Hz Optional: Frequency Calibration Available
Media	Standard: Non-Reactive Gases, Water Optional: Other Media
Temperature Measurement	Optional: Thermocouple


¹Based on Average of Test Point Data

²Utilizing 0.1% Accurate Pressure Sensors Properly Rated for Flow Speed ³For Most Accurate Compressible P-V Reduction. Additional Equipment Required ⁴Optimized for time-averaged flows

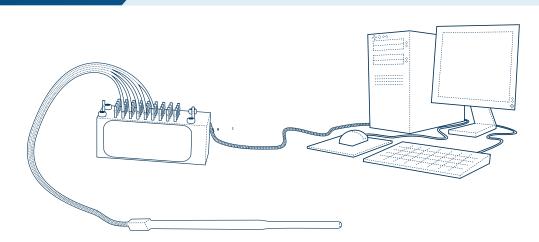
Geometry and Construction

Probe Geometry	Straight, Cobra, L-Shaped, Drilled Elbow
Number of Holes	3, 5, 7
Tip Geometry⁵	Standard: 60° Conical Optional: Hemispherical
Tip Diameter	Standard: 3.18 mm Optional: 1.59 mm, 2.38 mm, 6.35 mm
Material	300 Series Stainless Steel Construction, Including Shafts and Internal Tubing
Pneumatic Connection	Exit Tubing of 1.02 mm (0.040″) OD with Tubulation
Mounting	Standard: Hex Prism Optional: Rectangular Prism, Cylindrical with Flat
Probe Reference	Flat on Hex Mount
Flow Temp. Limits	Standard: 0 – 500°C

⁵Indicates Full-Angle Measurements

The stated velocity accuracy for Aeroprobe's multihole probes is 1 m/s or 1% of the measured velocity, whichever is larger, assuming a properly ranged scanner. The graph below illustrates the effect of scanner range on velocity accuracy. The graph shows the allowable velocity error as a function of velocity for three different pressure scanner ranges, all with 0.5% full-scale span error. The calculated error assumes that the pressure measured by the scanner is the dynamic pressure and no system or reduction error is accounted for.

When designing a multihole probe test it is important to consider the effect of pressure measurement error at the desired flow velocity. For example, the user should not expect accuracies of less than 1/ms using the +/-1 psi scanner with 0.5% FSS error for a measurements below approximately 60 m/s.


Where your probe fits in our system

SYSTEM SCHEMATIC

Aeroprobe provides complete system solutions to challenging and unique flow measurement problems.

Aeroprobe systems include:

- Measurement instruments
- Supporting hardware
- Data acquisition
- Software

PRODUCT SPECIFICATIONS

Minimum Bend Radii¹ (r) (Centerline)

Component Diameter	Minimum Bend Radius
1.59 mm	3.90 mm
2.38 mm	6.35 mm
3.18 mm	9.53 mm
6.35 mm	14.30 mm

¹Refer to technical drawing below for notations

Minimum Bent Tip Dimensions

Tip Diameter	Min. Tip Lengths ^{1, 2} (t-Min) (Cobra and Bent)	Min. Bent Neck Lengths ^{1, 2} (<i>n</i> -Min) (Cobra Only)	
1.59 mm	17.50 mm	16.01 mm	
2.38 mm	22.00 mm	22.00 mm	
3.18 mm	25.40 mm	34.00 mm	
6.35 mm	47.50 mm	51.00 mm	
10-for the the include of the law former that is a			

¹Refer to technical drawing below for notations ²Measured to shaft centerline

Min., Standard, & Max. Drilled Elbow Tip Lengths^{1,2} (e)

Tip Diameter	Min. Tip Lengths	Std. Tip Lengths	Max. Tip Lengths
1.59 mm	3.00 mm	4.50 and 6.00 mm	8.00 mm
2.38 mm	4.50 mm	6.00 mm	8.00 mm
3.18 mm	6.00 mm	10.00 mm	12.00 mm
6.35 mm	9.40 mm	N/A	18.00 mm

¹Refer to technical drawing below for notations ²Measured to shaft centerline

Geometry Limitations for Multi-Hole Probes

Dimension	Minimum	Maximum
Tip Diameter (<i>d</i>) ¹	1.59 mm	6.35 mm
Overall Length (<i>I</i>) ¹	102 mm	255 mm
Tip Length (t) ^{1,3}	t-min	102 mm
Neck Length (n) ^{1,3}	n-min	102 mm
Included Tip Angle (Conical)	60°	60°

¹Refer to technical drawing at bottom-left for notations

³Minimum tip lengths and neck lengths are centerline measurements, and are given in two tables to the left

Standard Tolerances

Dimension or Component	Tolerance
Tip Diameter and Exit Tubes	± 0.05 mm
Other Diameters (Housing Tubes)	± 0.10 mm
Locations (Centerlines, Ports)	± 0.05 mm
Primary Lengths (Overall Length, Exit Tubes, Hex Mount, Ferrules)	± 2.54 mm
Other Lengths (Bent Leg, Housing Stages)	± 5.1 mm
Included Tip Angle (Conical)	± 0.5°
On-Axis Bend Angle	± 1°
Off-Axis Bend Angle	± 5°

PROBE MODEL NUMBER STRUCTURE:

P-C05C03S-SX-S-152-___

Multi-Hole Probe Model Number Definition

1	P: Standard Probe
2	C: Conventional
3	Number of Probe Ports (03, 05, 07)
4	Tip Style (C = Conical, H = Hemispherical, D = Drilled Elbow, R = Boundary Layer Drilled Elbow)
5	Tip Diameter ⁴ (01 = 1.59 mm, 02 = 2.38 mm, 03 = 3.18 mm, 06 = 6.35 mm)
6	Shaft Style (S = Straight, L = L-Shaped, C = Cobra, E = Eccentric)
7	Temperature Rating (S = 500° C, H = 900° C, U = 1200° C)
8	Thermal Capability Enhancement (X = None, T = Thermocouple, H = Heater, B = Thermocouple and Heater)
9	Customization (S = Standard, N = Near Standard, C = Custom)
I	Overall Length of Probe ⁴ (mm)
t	Length of Probe Tip ^{4, 5} (mm)
n	Length of Cobra Neck ^{4, 6} (mm)
⁴ References Geometry Variat	bles

^sL-Shaped and Cobra Only ⁶Cobra Only

Example Probe Model Numbers:

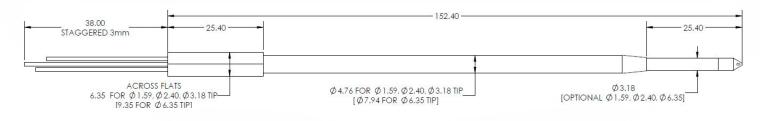
Standard 1.6 mm Drilled-Elbow Five-Hole Probe with Thermocouple for Turbomachinery Applications. Overall Length 152 mm, Tip length 4 mm.

Model Number: P-C05C01D-ST-S-152-004

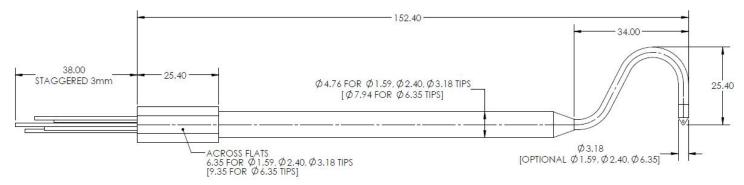
Near-Standard 3.18 mm Cobra Seven-Hole Probe for Aerodynamic Testing. Overall Length 250 mm, Tip Length 25 mm, Cobra Neck Length 38 mm.

Model Number: P-C07C03C-SX-N-250-025-038

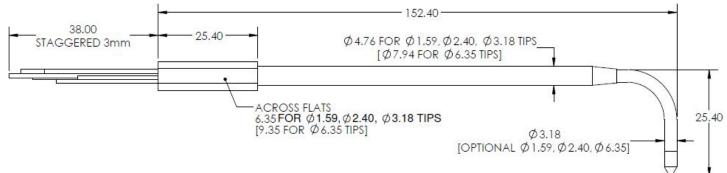
Custom 6.35 mm Straight Five-Hole Probe for Testing in Water. Overall Length 300 mm. Customization Due to Custom Mount and Use of Inconel for Oxidation Resistance.


Model Number: P-C05C06S-SX-C-300

Please Note:


- Standard probes are manufactured with 1.59 mm, 2.38 mm, 3.18 mm and 6.35 mm tip diameters, and are 152 mm in length.
- Near-standard probes have standard geometry EXCEPT for the length of the shafts.
- Custom probes have variations from the standard that include non-standard tip sizes, non-standard probe or mount geometry, or non-standard materials.
- **Important:** Near-standard and custom probes require confirmation of probe drawing by customer, prior to manufacturing.

Straight


Model Number: P-C03C03S-SX-S-152

Cobra Model Number: P-C03C03C-SX-S-152-025-034

L-Shaped Model Number: P-C03C03L-SX-S-152-025

Drilled Elbow Model Number: P-C03C03D-SX-S-152-006

CALIBRATION & SERVICES

ONE SOURCE FOR A FULL SOLUTION

The probe calibration is essential to the proper operation of the probe. It defines the relationship between the measured probe port pressures and the actual velocity vector sensed by the probe and pressure transducers. The probe is placed in a known flowfield and rotated to between 2000 and 6000 discrete points (depending on probe type). A calibration map is then generated for use with pressure to velocity reduction software, such as Aeroflow, Aeroprobe's data acquisition and data reduction software.

Aeroprobe's calibration wind tunnels are thoroughlycharacterized free jets, configured to allow continuous flow at 5 m/s to Mach 2.0. This configuration allows Aeroprobe to record extreme number of calibration points for each calibration. Aeroprobe can calibrate probes for other fluid flows via Reynolds number matching, and can recommend a calibration schedule for any probe and application.

CAPABILITIES

Probe Calibrations from 5 m/s to Mach 2.0	NIST-Traceable Calibrations
Average Angular Accuracy of <1°	Specialized Calibrations Available
Average Velocity Accuracy of 1% or ± 1 m/s	2000-6000 Calibration Points

** Reported probe calibration accuracies are based on the measured error values for a comprehensive set of test points collected in Aeroprobe's laboratory wind tunnel facilities. Flow environments exist where expected errors could be larger. Contact Aeroprobe for more information.

COMPANY SUMMARY

Engineering Flow-Measurement Solutions

Unique challenges. Quality solutions.

Aeroprobe provides air data measurement systems to aerospace, automotive, turbomachinery, wind turbine, and wind tunnel testing industries around the world. Aeroprobe's air data systems for unmanned aircraft provide real time air speed, angle of attack and angle of sideslip for improved flight performance. Turnkey systems include instrumentation for measurement, hardware for data collection, and software for data reduction, analysis and visualization. High temperature probes operate in flows up to 1200°C. Omniprobes, featuring a 300° flow angle range, are capable of measuring reversed flow. Fast response probes provide a frequency response exceeding 4 KHz. Rake configurations allow for simultaneous multi-point, unsteady measurements. The company conducts international business through a network of over 20 distributors.

+1 (540) 443 - 9215 Aeroprobe Corporation info@aeroprobe.com 200 Technology Drive www.aeroprobe.com

Christiansburg, VA 24073 **United States**